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ABSTRACT 

Using affine B r u h a t - T i t s  buildings,  we associate  cer ta in  subsh i f t s  of  finite 

type  to s y s t e m s  arising from the  act ion of a C a r t a n  subgroup  of a p-adic 

semis imple  Cheval ley group on compac t  quot ient  spaces  F \ G .  These  are 

used  to s t u d y  the  resul t ing  dynamica l  sys tems .  

Many interesting dynamical  systems may be obtained as follows: Let G be a 

topological group, F < G a lattice and H < G a subgroup. H acts on the 

space F \ G  by translations, Th: F\G ---* F\G is given by Th(Fg) = Fgh. This 

action preserves the normalized G-invariant measure p on F \ G  and we obtain a 

system (F\G,  B, p, H)  where B is the Borel a-algebra of F \G.  A special class of 

such systems, which is the subject of this paper, are those obtained when G is a 

semisimple Chevalley group over Qp and H is a subgroup of a Caf tan  subgroup 

of G. One of the main tools for studying dynamical systems with actions of Z, 

i.e. systems of the form (X, ~', v, T) where T: X --~ X is a measure preserving 

transformation, is constructing a "symbolic description" of the system. By this 

we mean the use of a parti t ion of X into finitely many pieces in order to obtain 

a morphism of dynamical systems (I): (X, .~, u, T) ~ (S z, M ,  u', a) ,  where S is 

a finite set indexing the parti t ion and a: S z --~ S z is the shift map. Obtaining 

such a map is especially useful when the image is a Markov shift, i.e. (I)(X) C S ~ 
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is a subshift of finite type (a topological Markov shift) and the measure u' is a 

Markov measure on it. For actions of groups other than Z such "(topological) 

Markov Partitions" are harder to obtain. Also the structure of higher dimensional 

subshifts of finite type ("tilings") is in general much more complicated than that 

of the one dimensional ones. 

Semisimple Chevalley groups over Qv are associated with affine Bruhat-Tits 

buildings. We will show how these buildings may be used to obtain subshifts of 

finite type which are factors of the systems we are interested in. In general these 

will be higher dimensional subshifts of finite type ("tiling systems"). These fac- 

tors will be used to study the systems (F\G,  B, p, H). The main result concerning 

such groups that we obtain is the following: 

THEOREM 3.1: Let G be a semisimple Chevalley group over Qp, F < G an  

irreducible torsion free lattice, A < G a split Caftan subgroup of G, B the Borel 

a-algebra of F \G,  # Haar probability measure on F\G,  T < A the maximal  

compact subgroup of A. 

(1) Let H < A be a dosed subgroup, d = rankH (/.e., H / H  A T  ~ zd).  Then 

there exists a d-dimensional subshift of finite type (~2, 3 c, u, H)  on which 

H acts via H / H  Cl T so that (F\G, 13, p, H)  is a compact a n n e  extension 

of (f/, 3 c, u, H).  When H contains a regular element the extension is a 

compact group extension. 

(2) The compact A orbits in F \G  are dense. 

(3) Let Qp* - H'  < A be a regular one parameter subgroup, let H = T H ' ,  

r /Haar  measure on H normalized so that ~(T) = 1. 71 induces a measure 

on compact H orbits in F \G.  The measure of  a compact H orbit is a 

natural number. Denote by an the number of  compact orbits of measure 

n. an ~ 00, and  

o o  

e x p ~ d a a x n _  1 
n=l din n d e t ( I -  x M )  

(4) 

where M is the adjacency matrix  of  a corresponding one-dimensional 

subshift of finite type. 

(Notations as in (3).) Let #N be the probability measure obtained by 

normalizing the sum of  the measures induced from ~1 on the compact H 

orbits of measure <_ N.  Then limN--.oo #N = # in the weak* topology. 
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(5) For any g E A such that < g > is not compact, the (one-dimensional) 

system (F\G,  B, p, Tg ) is Bernoulli. 

(6) The directional entropy fimction h,: A -~ ]~+ is piecewise linear. 

It should be noted that the denseness of the compact A orbits for semisimple 

Lie groups over R was proved by G. G. Mostow [Mos], and by G. Prasad [Pr], 

via different methods, for the case of p-adic groups. The Bernoullicity of rig for 

g C A \ T was proved using a different method by S. G. Dani [D]. The methods 

developed in this work are applied in [Moz2] to study closures of orbits of the 

maximal split Cartan subgroups for G = PGL(Qv) × PGL(QI).  

Section 1 contains a short summary of the definitions and basic properties of 

Bruhat-Tits buildings we will be using. Section 2 describes the construction of 

the subshift of finite type for systems as above where G is a group acting on an 

affine Bruhat-Tits building. Some special properties of these subshiffs of finite 

type are proven and used to obtain information about the original system. In 

section 3 we apply the results of section 2 to systems arising from semisimple 

Chevalley groups over Qp, and give some applications and examples. 

1. B r u h a t - T i t s  bu i ld ings  

We review here briefly the main properties of Bruhat-Tits buildings we will be 

using. We follow Brown's book [B], see also [B-TI], [B-T2], [Hi], [Till, [Ti2] and 

[Ti3]. 

Definitions: 

(1) A finite dimensional simplicial complex is called a c h a m b e r  c o m p l e x  if 

all the maximal cells - -  chambers - -  have the same dimension and any 

two chambers may be connected by a ga l l e ry  - -  a sequence of chambers 

so that consecutive ones have a common codimension 1 face. 

(2) A labelled chamber complex is a chamber complex together with a la- 

belling of the vertices by a set of labels so that the vertices of any maximal 

simplex are in one to one correspondence with the set of labels. 

(3) C o x e t e r  comp lex .  Let (W, S) be a Coxeter group. Associate with it a 

complex obtained from the partially ordered set whose elements are the 

cosets w < S' > where w E W, S' C S, ordered by A -~ B if B C A. 

Any complex isomorphic to such a complex will be called a C o x e t e r  

complex .  This is equivalent to the complex obtained by viewing (W, S) 
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as a reflection group of a Euclidean space and the complex is the complex 

obtained by the parti t ion of the space by the reflection hyperplanes. A 

Coxeter complex is a t h i n  c h a m b e r  c o m p l e x  i.e. every codimension 1 

cell belongs to exactly two chambers. 

(4) An aff ine C o x e t e r  g r o u p  is a group of isometries of an affine space 

generated by reflections in aNne hyperplanes belonging to an invariant set 

"H of a n n e  hyperplanes, s.t. every point in the space has an open set which 

intersects only finitely many hyperplanes from ~ and the geometrical 

realization of the corresponding combinatorial complex is an a n n e  space. 

This complex is called an aff ine C o x e t e r  c o m p l e x .  

(5) A B r u h a t - T i t s  bu i l d i ng  (or just a bu i ld ing)  is a complex A together 

with a collection of subcomplexes called a p a r t m e n t s  satisfying the 

following properties: 

(B0) Every apar tment  is a Coxeter complex. 

(B1) For each pair of cells A , B  E A there exists an apar tment  

containing it. 

(B2) If E, E'  are two apar tments  containing A and B,  then there 

exists an isomorphism ~: E --~ E' which stabilizes A, B point- 

wise. 

(6) A building A is called an aff ine building if each apar tment  is an a n n e  

Coxeter complex. We shall always assume it is a locally finite complex. 

(7) Let G be a group of automorphisms of a building A. We will say that  G 

acts s t r o n g l y  t r a n s i t i v e l y  if for any apar tment  E and a chamber C E E 

and an apar tment  E t and C ~ E E'  there exists g E G so that  gE = E ~ and 

gC = C'.  

(8) A map ~: C --* D between two complexes will be called a d m i s s i b l e  if: 

(i) ~ is a local homeomorphism. 

(ii) When C and :D are labelled complexes, ~ preserves the la- 

belling. 

(9) Let G be a group acting strongly transitively on a building A. Fix an 

apar tment  ,4 and a chamber C E ,4. We define several subgroups of G: 

B = {g E G I gC = C pointwise}, 

N = { g E G  I g M = A } ,  

T = { g E g l g l A = i d } .  
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When A is an afline building we will denote: 

A = {g C N I g acts on .4 by translation}. 

B is a B o r e l  subgroup of G, W = N / T  the W e y l  g r o u p ,  A is a C a r t a n  

s u b g r o u p .  

(10) A m i n i m a l  ga l l e ry  connecting two chambers C, D E A is a sequence of 

chambers Co = C, C 1 , . . . ,  Cn = D s.t. the chambers Ci and Ci+l have a 

common face of codimension 1 and its length, n, is minimal. 

(11) A subcomplex is called c o n v e x  if it contains every minimal gallery 

connecting any two chambers of it. 

(12) A building may have several apar tment  systems. An apar tment  system is 

c o m p l e t e  if it contains any other apar tment  system. We will deal only 

with buildings with their (unique) complete apar tment  system. 

THEOREM 1.1 (see [B] IV.5 6): An  a/~ne building is contractible. 

Let 7) be a subset of an apar tment  `4 in an a n n e  building. The convex hull 

of 7), [7)], is the intersection of all the halfspaces of .4 containing 7) bounded by 

one of the hyperplanes partitioning .4 into chambers. This is an easy consequence 

of the fact that  the chambers whose interior intersects a straight interval in an 

apar tment  form a minimal gallery. 

THEOREM 1.2 (see [B] VI. Theorem 2): A subcomplex  o f  an atone building A 

which is either convex or has n o n e m p t y  interior and is isometric to a part  o f  an 

apar tment  (i.e. to a subset o f  a Euclidean space) is contained in an apartment .  

PROPOSITION 1.1: Let  7) C .4 be a convex subcomplex  o f  m&~cimal dimension. 

An  admissible map  ~: 7) ~ A is an isometry. 

Proof: It is enough to prove the assertion for 7) a finite complex. We will show, 

by induction, that  if £ = (Co, C1 . . . . .  Cn) is a minimal gallery and ~: £ --+ A an 

admissible map, then ~ is an isometry and ~(£)  is contained in an apartment .  Let 

£t = (Co, C 1 , . . . ,  Cn-1).  By the induction hypotheses it follows that  ~l~, : £~ 

A is an isometry and ~(£r)  is contained in an apar tment  E r. Let p: A ~ E ~ 

be the retraction with respect to the apar tment  E ~ and the chamber ~(C~-1)  

(see [B] IV.3). The chamber p(~(Cn) )  is in E'.  It  is different from ~(Cn-1)  and 

adjacent to it via the face ~(Cn-1 ~C~).  Since ~IL, is an isometry, it follows that  

po~: £ ~ E ~ is an isometry. Since p and ~ do not expand distances it follows that  
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~: E --* A is an isometry and ~(E) is a minimal gallery connecting the chambers 

~(C0) and ~(Cn). Let E be any apar tment  containing ~(C0) and ~(C~). Since 

an apar tment  contains any minimal gallery connecting two chambers of it (see 

[B] IV.4) it follows that  ~ (£)  C E. I 

PROPOSITION 1.2: The stabilizer Gx = {g E G[ gx = x} of a point x E A, A an 

a n n e  building, is a compact subgroup (w.r.t. the product topology). 

Proof: Follows immediately from the fact that  the building is a locally finite 

complex. I 

2. S y s t e m s  c o r r e s p o n d i n g  to  g r o u p s  a c t i n g  on  a n  aff ine bu i l d ing  

Let A be an affine building with (the) complete apar tments  system, r -- dim A. 

Let G be a group of automorphisms of A acting on it strongly transitively. Endow 

G with the topology induced from the product topology on A ~. Let F < G be a 

uniform lattice. Assume that  F is torsion free. Let A be the Car tan subgroup of 

G, B the Borel a-algebra of F \G,  # the G-invariant probability measure on F \G.  

G acts on F \ G  by translations: Tgo(Fg ) = Fggo. In this section we will study 

systems of the form (F\G,/3,  #, H)  where H is a subgroup of A. 

PROPOSITION 2.1: F acts freely on A. 

Proo~ This follows immediately from the fact that  the stabilizer of a point in 

A is compact,  together with the discreteness of F and the assumption that  F is 

torsion free. I 

Since F is a group of automorphisms of the complex A we have a quotient 

complex Y = F \A .  Let 7r: A ~ y be the natural  projection. 

PROPOSITION 2.2: Y is a ~nite complex. Tile labelling of A induces a labelling 

of Y. A is the universal covering space of Y with F the covering group and 

7r: A ~ Y a covering map. 

Prool~ Fix a chamber C in A. For any chamber D in Y denote: G(C, D) = 

{g E G ] 7r(9C ) = D}. G(C, D) is an open set which is a union of right r-cosets.  

If D, D' E Y, D # D' then G(C, D) n G(C, D') = ~. Since G acts transitively 

on A and ~r is surjective it follows that  G(C, D) # 0 for any D E Y. Hence 

F\G = UDey G(C, D) is a disjoint open cover. Since r\G is compact,  it is a 

finite cover. Hence Y is finite. The rest of the proposition follows from the fact 

that  A, being an affine Bruhat-Tits  building, is contractible. I 
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Let  .4 denote  the  a p a r t m e n t  in A on which A acts  by  t rans la t ions .  Let  

T = {g E G I glA = id}. T is the  m a x i m a l  compac t  subgroup  of A. A / T  ~- Z r, 

r = r a n k G  = d im A.  

THE SYMBOLIC SYSTEM. Define a symbol ic  sys t em fl: 

t2 = {~: A ~ Y ] w is an admiss ib le  m a p } .  

We can view t2 as an r -d imens iona l  subshif t  of finite t ype  whose symbols  space 

is the  set of chambers  of Y. The  ac t ion  of A on .4 by t r ans la t ions  induces an 

ac t ion  of A on fl.  Denote  the  ac t ion  o f a  E A b y  S~: t2--* ~ ,  Saw = W O a l ~ .  

(We shall  refer to  a po in t  w E f/ also as a "ti l ing" .) 

Define a m a p  ~: F \ G  --+ Y/by: 

~ (Fg)  = 7r o gl~" 

It  is easi ly seen t ha t  ~ is well defined, i.e. i ndependen t  of the  choice of g E Fg.  

As g: A -~ A and  7r: A --, y are  admiss ib le  so is ~ (Fg) :  `4 -*  Y. 

PROPOSITION 2.3: ~: F \ G  ~ ~ is onto. 

Proof: Let w E ft. w: `4 ~ Y is a p rope r  map .  Since `4 is s imply  connec ted  and 

7r: A - ,  y is a covering map ,  we can lift w to a m a p  ~:  `4 --* A,  s.t. Tr o & = w. 

The  admiss ib i l i ty  of the  maps  ~r and  ~ implies  t ha t  & is admiss ible .  F r o m  the 

p roper t i e s  of affine bui ld ings  (see P ropos i t i on  1.1 and  T he o re m 1.2) it  follows 

t ha t  &(.4) is an apa r tmen t .  Let  C E .4 be a ( r -d imens iona l )  chamber .  ~ ( C )  is a 

chamber  in &(.4). Since G acts  s t rong ly  t r ans i t ive ly  on A there  exists  an e lement  

g E G s . t . g . 4  = &(.4) and  gC = &(C).  Since b o t h  & and  g preserve the  label l ing  

of the  bu i ld ing  they  coincide on C. Hence g -1  o & is an admiss ib le  m a p  t ak ing  .4 

to i tself  fixing a chamber  C. Since .4 is a th in  chamber  complex  it follows t ha t  

i t  is the  ident i ty .  Hence gin = ~ ,  ~ ~ (Fg)  = w. I 

PROPOSITION 2.4: ~: ( F \ G ,  A) --* (~, A) is a homomorphism of the dynamical 

sys tems.  

Proof." ( ~  o T ~ ) ( r g )  = ~ ( T ~ ( r g ) )  = ~ ( r g ~ )  = ~ o g ~ , ~  = ~ o g,~ o a , ~  = 

~ ( r g )  o a l ~  = s ~ ( ¢ ( r g ) )  = ( s ~  o ¢ ) ( r g ) .  I 

PROPOSITION 2.5: ~ is COntinuous. 

Proof: This  follows i m m e d i a t e l y  from the cont inu i ty  of the  ac t ion  of G on A.  

I 
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THE INDUCED MEASURE ON ~. The  Haar  measure  # on F \ G  induces a measure  

u on ft. Let T denote  the Borel a -a lgebra  of f/. For X E ~-, let u(X) = 

#(~-I (X)) .  Let R C A be a subcomplex,  and A: R --* Y be an admissible map .  

Define a ("cyl indrical")  set in f~: 

We will omi t  the superscr ipt  R when it is obvious f rom the context .  

PROPOSITION 2.6: Let R C ,4 be a convex subcomplex, ,kl,)~2: R --* Y 

admissible maps.  Then 

Proof: First  we verify tha t  C~, = C~,  i = 1, 2, are not empty.  Since R is convex 

it is s imply  connected,  hence there  is a lifting ~ :  R --* A s.t. ~r o ,~i = ~ .  An 

admissible m a p  of a convex subset  of A to A is an isometry.  Hence ~ i (R)  C A is 

an isometr ic  image of a subset  of an apa r tmen t .  By T h e o r e m  1.2 it follows t h a t  it 

is contained in an a p a r t m e n t  Gi of A. By the s t rong t rans i t iv i ty  of G, there exist 

e lements  9i E G such tha t  9i.A = Ei and giC = ,~i(C) for some fixed chamber  C 

in R. Since R is connected,  gi, ~i are admissible maps  and a p a r t m e n t s  are thin,  

it follows tha t  gqR = ~i. Hence qo(Fgi) E C~,, i = 1, 2, ~ C~, ~ 0. Let  

/3, = {g  E a I g l .  = 

Clearly ~(FB~) C CA,. Assume tha t  w E C~, and  F 9 E ~ - l ( w ) .  F ix  a chamber  

C E R. For any g' E Fg, g~C is a chamber  in A satisfying ~r(grC) = vr(~i(C)).  

Since F is the covering group of ~r: A --+ Y (Propos i t ion  2.2), there exists "y E F 

s.t. "~9~C = ~(C).  ~ and 3,9~1R are two liftings of A~ coinciding on C. I t  follows 

tha t  "Yg'IR = ,~i; i.e. any element in ~-1(C~,)  C F \ G  has a representa t ive  in Bi. 

Since F acts  freely on A it follows tha t  this representa t ive  is unique. Hence 

= = 

where/~ is the Haa r  measure  on G normal ized so tha t  the measure  of a fundamen-  

tal domain  for .F is 1. Choose 91 E B1, 92 E /32. I t  follows tha t  /32 = g2g11B1. 

Since G has  a latt ice,  it is un imodu la r  and ~ is left and right invariant .  Hence 
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PROPOSITION 2.7: For any ~ C f~ there exists  a go E G so that  ~ - l (a ; )  = FgoT. 

F~urthermore, the fiber ~ - 1 ( ~ )  above o~ can be identified wi th  T.  

Proo~ We h a v e ~ - l ( w ) = { F g E F \ G ] T r o g l ~  =w}"  For a n y t  c T ,  tl~ = i d ,  

hence ~-l(oJ)  is T invariant. Hence ~ - l ( w )  -- Us  Fg~T, where a belongs to some 

nonempty indices set. Assume Fg, Fg' E ~- l (w) .  The maps glA,g'l~: .A --+ A 

are two liftings of w: .A --+ Y. Since F is the covering group of ~r: A --~ y there 

exists "~ C F such that  ~/o g~lA -- gl~" Hence g-l~/g'lA = id ~ g-l .yg,  E T 

g T  = ~/g'T ~ F g T  = Fg'T .  Hence ~ - l ( w )  = FgoT for some go C G. To verify 

that  the fiber may be identified with T, assume Fgot -- Fgot' for some t, t ~ E T .  

It  follows that  g o t ' t - l g o  I C F. Since t, t '  C T, it follows that  t ' t  -1 and hence also 

g o t ' t - l g o  1 has a fixed point in A. Since F acts freely, g o f f t - l g o  I = e ~ t = t'. 

| 

Propositions 2.3, 2.4, 2.5, 2.7 imply: 

COROLLARY 2.8: The m a p  ~ induces an i somorphism between the dynamical  

sys tems:  

~: ( F \ G / T ,  A)  ~ (~2, A).  

COMPACT GROUP/AFFINE EXTENSIONS. Let H be a group acting on a proba- 

bility space (X, #). Denote the map corresponding to h C H by Th: X --+ X .  Let 

K be a compact  group, ~: H × X ~ K a measurable map. Let h -+ Th (where 

Th: K ~ K is a group automorphism of K)  be a representation of H in the group 

of automorphisms of K.  The corresponding affine extension (skew product) is 

the system (X x K,  # x AK, H)  where/~g is the Haar probabili ty measure on K.  

The action of H on X × K is given by 

Th: X x K --* X x K ,  T h ( x , k )  = (Thx ,¢ (h ,X )Th (k ) ) .  

Notice that  in order that  Th will actually define an action of H on X x K,  

the maps ¢,~-g, g E H have to satisfy the following condition: ~(gh ,  x)  = 

¢(g,  ThX)T~(¢(h, x)) .  When ~'h = id for all h e H the system is called a compact 

group extension. In this case ¢ is a cocycle. 

THEOREM 2.1: ( r \ a ,  p, A) is a compact  affine extension of  ( r \ a / T ,  ~, A).  (~ 

is the measure  induced on F \ G / T  from the measure  # on F\G.)  I f  A is abelian, 

this is a compact  group extension. 
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Proof." Fix a measurable section f :  F \ G / T  --* F\G, i.e., a measurable map F 

s.t. FgT = f (FgT)T  for all FgT ~ F\G/T.  Next define ¢: A × F \ G / T  ~ T so 

that:  

(*) f ( r g T ) a  = f ( r g a T ) ¢ ( a ,  rgT) 

for all a C A, FgT C F\G/T.  ¢ is well defined: f (FgaT)T  = FgaT = FgTa = 

f (FgT)Ta  = f (FgT)aT; hence there exists an appropriate ¢(a, FgT) E T. 

Moreover it follows from Proposition 2.7 that  ~b(a, FgT) satisfying (*) is unique. 

Define a map F: F \ G  --~ F \ G / T  x T, F(Fg) = (FgT, m(Fg)), where m: F \ G  --~ T 

satisfies rg  = f(FgT)m(Fg).  It  is easy to verify that  m is well defined. F is a 

bijection between F \ G  and P \ G / T  x T. For a ~ A define T~: F \ G / T  x T 

F \ G / T x T  by T~(FgT, t) = (FgaT, ¢(a ,  FgT)r~(t)), where r~(t) = a - l t a  (hence 

when A is abelian, v~ = id and we will have a compact group extension). We have 

to verify that  T~ defines an action of A on F \ G / T  x T. To see this we will show 

that  F o T~ = T~ o F for all a E A. This will also show that  F defines an isomor- 

phism between the dynamical systems (F\G,  #, A) and (F \G/T  x T, # x AT, A). 

That  F,  (#) = /5  x AT follows from the fact that  # is T-invariant and that  AT is 

the only T-invariant probability measure on T, and hence on each fiber of the 

map  F \ G  --~ F\C/T .  

F o T~(Fg) = F(rga)  = (FgaT, m(rga)),  

:~ o F(rg)  -- :~(rgT,  m(rg)) = (rgaT, ¢(a,  rgT)~(m(rg) ) ) .  

We have: 

0. ~(~,  r gT) ,  m( rg ) ,  m ( r g a )  e T. 

1. rg~ = f ( r g a T ) m ( r g a ) .  

2. Fg = y ( r g T ) m ( r g ) .  

3. f (FgT)a¢(a ,  rgT)  -1 = f(FgaT).  

2, 3 imply tha t  

/ ( r g a T ) ¢ ( a ,  rgT)r~(m(rg))  = f ( r gT)a¢ ( a ,  r g T ) - l ¢ ( a ,  rgT)~ , (m(rg) )  

: f ( r g T ) a a - ~ m ( r g ) ~  : rg~. 

From 1 and the uniqueness of t C T s.t. f (FgaT) t  = Fga,  it follows that  

¢(~, rgT)~,(m(rg))  = ,~(ra~). 



An admissible m a p  of 

the image is a convex 

[~ (v ) ]  = J,~([v]). It 

t h a t  ~1 = ~2- I 
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Hence F o T~(rg) = ~ o F( rg) .  . 

The  following l e m m a  is a useful tool in s tudying the subshift  of finite type  

~2 obta ined  as above: 

LEMMA 2.9: Let 7? C A be a connected subcomplex. Let A: 7? ~ Y be an 

admissible map. Denote by [l)] the convex hull of :D in A (convex hull with 

respect to the hyperplanes dividing ~4 into chambers). There is at most one 

admissible m a p  [A]: [7?] ~ Y such that [A]] v = A. 

Proof: Let A1, A2: [7)] ~ 1 / b e  two admissible maps  such tha t  AII~ = A = A21~. 

Lift t hem to maps  Ai: [:D] ~ A such tha t  ~r o A~ = Ai and AI(C) = A2(C) for 

some chamber  C c 7). It  follows from the connectedness of ~ tha t  AII~, = A21v. 

a convex subset  of an a p a r t m e n t  is an isometry.  Hence 

subset  of an apar tment .  We have AI([:D]) = [At(:D)] = 

follows (since apa r tmen t s  are thin and AI(C) = A2(C)) 

COMPACT ORBITS. In this subsection we will show how to use the above con- 

s t ruct ion to obta in  informat ion  on the dis t r ibut ion of compac t  A orbits  in F \ G .  

For this and the rest of the section we need the assumpt ion  tha t  (F\G, B, #, A) 

is mixing. 

LEMMA 2.10: Let Fg E F\G. Its A-orbit, rgA, is compact if  and only i f  the 

A-orbit of~(rg) e ft is finite O.e., i f f~ (Fg )  is a periodic tiling). 

Proof: Using the Baire ca tegory  theorem it follows tha t  an orbit  is compac t  

if and only if the stabilizer of a point  in the orbit  is cocompact .  In par t icular  

for actions of countable  g r o u p s ,  a point  in a compac t  orbit  must  have a finite 

index stabil izer and hence the orbit  must  be finite. Since the A-act ion on r\G/T 
factors via the act ion of the countable  group A/T,  it follows tha t  an A-orbi t  in 

F\G/T is compac t  if and only if it is finite. Thus  by Corol lary 2.8 an A orbit  

in ft is compac t  if and only if it is finite. Since T is compac t  it follows tha t  an 

A-orbi t  in r \ a  is compac t  if and only if its image in F\G/T,  and hence in ft, is 

compact ,  i.e., if and only if the image in ft is finite. | 

I t  follows tha t  if the compac t  A orbits  in F \ G  are dense, so are the periodic 

points  in ft. Observing tha t  an A-orbit  in F \ G  consists of the fibers (w.r.t.  ~) 

above its image in ft, and tha t  these fibers, ~ - l ( w ) ,  are compact ,  we have tha t  

the converse s t a t ement  also holds: 



264 S. MOZES Isr. J. Math. 

PROPOSITION 2.11: I f  the periodic points in ~ are dense, so are the compact A 

orbits in F\G.  

Thus in order to show that  the compact A orbits in F \ G  are dense we have 

to study the periodic points of ~. It should be noted that  unlike one dimensional 

subshifts of finite type ("topological Markov shifts" ) where, under the assumption 

of transitivity, the periodic points are dense, higher dimensional subshifts of finite 

type need not, in general, contain periodic points (see for example [Rob]). 

The apar tment  .4 is an affine space of dimension r; its parti t ion into cham- 

bers is given by a family of hyperplanes. These hyperplanes are translates of 

finitely many codimension 1 subspaces. Denote the collection of these subspaces 

by 7 ). The Car tan subgroup A acts on A as a group of translations via A / T  ~ Z r. 

Let O E A denote the origin. It  is easy to see that:  

PROPOSITION 2.12: There exists an element a E A such that c~O ¢ 0 and the 

line joining 0 and a O  does not lie in any of the subspaces in 7 9. 

Fix a chamber Co in A. Let xo be a point in its interior. Look at the line L 

going through Xo and ax0. By a small perturbat ion of the point xo we can make 

sure that  L intersects only chambers and their faces of codimension 1. Let £ C A 

be the subcomplex made of the chambers which L intersects. £ is "a periodic 

zigzag line". See Figure 2.1 for an example corresponding to G = PGL(3, Qp). 

Figure 2.1 

Definition: A complex £ as above will be called a p r i n c i p a l  ga l le ry .  Notice 

tha t  the convex hull of a principal gallery is the whole apartment.  

Define 

E = E~ = {f: £ -* Y I f admissible}. 
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It  is easy to see tha t  E is a one dimensional subshift of finite type. a acts on £ 

by translat ion,  inducing a map  S~: E ~ E. Let R: ~ ~ E, R(w) = ~l~" 

PROPOSITION 2.13: The map  R: ft ---* E is a homeomorphism. 

Prod:  i. Injeetivity. We have to show that  if w, w ~ E gt coincide on £,  then 

= J .  However, as A is the convex hull of £ this follows immediately  from 

L e m m a  2.9. 

ii. Surjectivity. Let f :  £ --~ Y be an admissible map.  Lift it to an (admissible) 

map  ] :  £ --~ A (a lifting exists since £ is simply connected).  ] is an isometry. 

(£  is a sequence of chambers  in an apar tment  such tha t  moving from chamber  to 

chamber  we cross different hyperplanes. Using this and the admissibility of ] it 

can be shown by induct ion that  ] is an isometry.) By Theorem 1.2 an isometric 

image of a par t  of an apar tment  is a par t  of an apar tment .  Hence there exists 

an apar tment  A '  containing ] (£) .  Let g E G so that  gA = A'  and gCo = ](Co). 

Let w = f (Fg)  E ~t. Clearly R(w) = f .  

iii. Continuity. It  is clear tha t  R is continuous. To see that  R -1 is continuous 

it is enough to show tha t  for any cylindrical set C~ C £t where :D C A a finite 

subcomplex and A: ~P --~ Y an admissible map, the set R(C~) C E is open. Since 

£ is a principal gallery, its convex hull is all of .4. Hence there exists a finite 

"interval" £ C £ so tha t  its convex hull [L] contains the finite complex :D. If  

~ z , J  E f t  and ~lc = J I c  then wli~l = J l lc l  (see Lemma 2.9). In part icular  

wlv = w'tv. It  follows tha t  C~ = LJ~ 6~£~ where {A~: £ ~ Y} is the collection of 

maps  Wl~: £ ~ Y for w E C~. It is easy to see tha t  R(C~£) is an open set in E. 

Hence R(C~) is open. | 

PROPOSITION 2.14: Let w E ~. The A orbit of w is finite if  and only if the orbit 

of R(w) E E under S~ is finite. 

Proof; Since the S~ orbit  of R(w) is contained in the image of the A orbit  of 

w, if the lat ter  is finite so is the former. Assume tha t  the orbit  of R(w) is finite, 

i.e., there exists d E N such tha t  SdR(w) = R(w). It  follows from the injeetivity 

of  R tha t  

(2.1) Sdw = ~z. 

Let j31, ~2, . . . , /3T E A so tha t  their images generate A / T  - Z T, i.e., they generate 

the group of t ranslat ions on ~. We have to show tha t  for each ~ there exists 
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m~ # 0 so that S ~ ' w  = w. Fix fl = fl~. Look at the sequence of elements 

SJ~w c fL It follows from (2.1) that 

(2.e) 
= = = 

i.e., for any j E E, R(S~) has an S~ orbit with period <_ d. Hence R(S~w) is 

determined by the map sJ~wlc~ : £d --* Y,  where £d is an "interval" of d chambers 

in £. Since R is injective it follows that SJ~w is determined SJ~WlLd. Since the 

collection of these maps is finite it follows that there exist k # l C ~ such that 

S~w = S~w. Hence S ~ w  = w for m = k - l  # 0. The A orbit of w is finite. | 

PROPOSITION 2.15: The system (E, S~) is topologically transitive. 

Proot  The system (E, S~) is a factor of the system (F\G, T~) (the factor map 

being R o ~p: F \ G  --* v.). The measure # on F \ G  induces a measure P on ~.. 

Identifying ~ and E via the homeomorphism R, the measure v is identified with 

p. It follows from Proposition 2.6 that for any nonempty open set U C E we 

have P(U) > 0. Using the assumption that (F\G,  B, #, A) is mixing and in 

particular T~: F \ G  --. F \G  is mixing, we conclude that (Y~,G S~) is mixing. 

Hence if U,V C E are nonempty open sets then P(U),P(V) > 0 and hence 

lim~_.~ P(S~'~U N V) = P(U)~(V) > 0. In particular S~nU n V # 0 for large 

enough n. | 

PROPOSITION 2.16: The measure ~ on E is the unique invariant measure so that 

h d & )  = 

We postpone the proof of this proposition to the next subsection (see Corol- 

lary 2.20). 

THEOREM 2.2': 

(1) The periodic points in f~ are dense. 

(2) Let a E A be as in Proposition 2.12. Let fPN C f~ be the set of points 

whose orbit under S~ has size <_ N. fan is a finite set. Let CN be the 

normalized counting measure on faN. Then lim~-.oo CN = v On the weak* 

topology). 

(3) Let an = ~: { w e ~ [ san w = w } . Define 

) 
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Then 
1 

F~(x) = det ( I  - xM~)'  

where M~ is the adjacency matrix of the subshift of finite type G~ defined 

above. 

Proo~ Using Propositions 2.13, 2.14 and 2.15, (1) follows from the well known 

result that the periodic points of a topologically transitive one-dimensional sub- 

shift of finite type are dense. (See the proof of Proposition 17.13, page 128 in 

[DGS].) In light of Proposition 2.16, (2) is just a special case of the assertion that 

in an aperiodic one dimensional subshift of finite type the sequence of normalized 

counting measures supported on points of period _< N converges to the measure 

of maximal entropy as N tends to infinity. (3) is well known in connection with 

the rationality of the zeta function associated with periodic points of a subshift 

of finite type. | 

THEOREM 2.2: Let G, F, A, # be as above, and assume that (F\G,  B, #, A) is 

mixing. Then: 

(1) The compact A orbits in r \a  are dense. 

(2) Let ~ be the Haar measure on A normalized so that ( (T)  = 1 (T is the 

maxima/compact  subgroup of A). Let a E A be as in Proposition 2.12. 

induces a measure on compact orbits of (a, T) in F\G. Let 73N C P\G 

be the set of points whose orbit under (a, T} is compact and has measure 

_< N. PN is made of finitely many (a, T} orbits. Normalize the measure 

induced on it from ~ to get a probability measure denoted by ~N. Then 

l i m n ~  @ =/~ (in the weak* topology). 

(3) Let  an = ¢ ( ( r g  • r \ a  I N • • a I = 

Define 

Then 
1 

F~(x) = det ( I  - xM~)'  

where Ms is the adjacency matrix of the subshift of finite type E~ defined 

above. 

Proof: The assertions follows from the corresponding ones in Theorem 2.2'. 

(1) follows using Proposition 2.11, (2) follows using Theorem 2.1. | 
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BERNOULLICITY. 90 E G is said to have an axis  if there exist an apar tment  

,40 and a line L C ,4o so that  L is go invariant and g0 acts on L by translating 

it a distance do > 0. Notice that  any c~ C A which generates a noncompact 

subgroup has an axis. We will assume throughout this subsection that  the system 

(F\G,  B, #, Tao) is mixing. We will show that  under these assumptions this system 

is Bernoulli. Fix a chamber Co C ,40 such that  L N Co ¢ 0. 

PROPOSITION 2.17: There exists r C N so that g~Co E ,40 and is a translate of 

Co: g~ Co = Co + Vo, where vo is a nonzero vector in the linear space corresponding 

to ,40 parallel to the line L. 

Proof: Look at the collection of apar tments  containing the line L. Restrict 

our at tention to the intersections of each such apar tment  with the collection of 

chambers touching L. We obtain a finite collection (recall that  the building A 

is locally finite) of "strips". Since go preserves L as well as the collection of 

apar tments  containing L, it follows that  it induces a permutat ion on this finite 

collection of strips. Hence some power of it maps each such strip, in particular 

the  one coming from ,40, to itself. Taking some further power (bounded by a 

function of the dimension of the building) of it we conclude that  its action on Co 

is by translation within ,40. I 

By a theorem of D. Ornstein (see [O1], Theorem 4, page 39), in order to 

prove that  Tg o is Bernoulli it is enough to show that  Tg~ = :/'go ~ is Bernoulli. 

Hence we will assume that  already go acts on a chamber Co E ,40 as translation 

by a vector vo. We will also be interested in computing entropies of elements 

having an axis. Since h(T~o ) = rh(T~o ) it will be enough to consider such go- 

We can assume now without loss of generality that  the line L passes through 

the interior of Co and intersects only the interior and codimension one faces of 

chambers. Let 1; C ,4o be the subcomplex consisting of the chambers intersected 

by L. Define a subshift of finite type: E = {f:  £ ~ Y I f admissible}, go: £ ~ £ 

induces a map $90 : E ~ E. Let ¢: F \ G  ~ E be given by ¢(Fg)  = 7r o gl~" ~- 

denotes the Borel a-algebra of E, 77 the induced measure on E from p via ¢. 

The following proposition is proved in the same way as Propositions 2.4, 2.8 and 

Theorem 2.1 (and coincide with them when go is generic). 

PROPOSITION 2.18: 

(1) . :  ( r \a ,  Sgo) is an epimorphism. 
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(2) Let  M < G be the subgroup M = {g E G I gF~ = id}. Then  M is 

compact  and the fibers ¢ - 1 ( f )  are M orbits. 

(3) The  sy s t em (F\G,  13, p, Tgo ) is a compact  a/~ne extension of(E,  F ,  ~/, $9o ). 

Denote by C R C E the cylindrical subset corresponding to an admissible 

map A: R -* Y where R C £ a subcomplex. Then in the same way as in 

Proposition 2.6 we have: 

PROPOSITION 2.19: Let  R C £ and A1, A2: R -~ Y be admissible maps,  then 

= 2) .  

L: is a sequence of chambers on which go acts by translation. Le t /9  C £: be 

a connected subcomplex which is a fundamental domain for this action. 79 is a 

finite subcomplex. £: = Uiez g~:D. A map E D f :  £: --+ Y induces a sequence of 

maps (fi)i~z, f i  = fig,  :Di  ---* Y ,  where D~ = g~D. Denote 

~, = {(f~)iez I f i : /P i  --~ Y induces an admissible map f :  79 --~ Y}. 

is a one dimensional subshift of finite type. (Its alphabet is the set of admissible 

maps f : / 9  --* Y.) It is naturally identified with E. Let S: E --* E be the shift 

transformation. It corresponds to $9o. Let ~ be the measure on E corresponding 

to v via this identification. From Proposition 2.19 it follows that  cylindrical sets 

corresponding to legal words of equal length have the same measure. 

COROLLARY 2.20: ~ is a max ima l  entropy Markovian measure  on E. 

Proof: ~ is stationary. To check that it is Markov, consider the cylindrical sets 

C],...yj, i < j ,  and C:~...yjy;+~ where { f ~ . . . f J f ] + l  ] 1 < s < t} is the collection of 

all legal words of length j - i + 2 starting with f~ . . .  f j .  Their number, t, depends 

only on f j .  They all have the same measure: D(C:,...:jf~+~) -- i(C:,...y~y~+ ). 

Hence 
::+, ) _ I 

t 

Note that  if the alphabet set { f : /P  ~ Y} is of size d then D(C:) = 1/d, for any 

admissible f : / 9  ~ Y. Hence D is a Markov measure. To see that  it is of maximal 

entropy, notice that  since cylindrical sets corresponding to legal words of given 

length have the same measure, it follows that the number (t) of symbols allowed 

to follow (or precede) any given symbol is independent of the symbol. Hence the 

Markov measure ~, which corresponds to the adjacency matrix divided by t, is 

the (unique) measure of maximal entropy. | 
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PROPOSITION 2.21: The system (E, :7 z, v, $9o ) is Bernoulli. 

Proof: ( E , F , u ,  Sgo) is identified with (E,.~,5,  S). The latter is Markov by 

Proposition 2.20. We have assumed that the system (F\G, B, #, Tgo) is mixing. 

Hence also its factor (E, $-, u, $9o ) (and (E, 9 ~, 5, S)) is mixing. By a theorem 

of N. Friedman and D. Ornstein (IF-O]) a mixing Markov system is Bernoulli. 
| 

THEOREM 2.3: The system (F\G, B, p, Tgo) is Bernoulli. 

Proof." It is a mixing compact ai:fine extension of a Bernoulli system (see Propo- 

sitions 2.18 and 2.21). (In case it is actually a compact group extension, then by 

a theorem of D. Rudolph ([Ru]) it is Bernoulli.) The compact group M, appear- 

ing in the affine extension, is totally disconnected. By the results of Juzvinskii 

and of Thomas (see [Thl], [Roll, [Ro2], [W, section 2]) the affine extension is the 

limit of a sequence of affine extensions each of which is either by a finite group 

or such that the group automorphism is Bernoulli. Since all these intermediate 

extensions are mixing (being factors of the original mixing system), it follows by 

using Rudolph's result or the results of D. Lind (see [Li]) that they, and hence 

(F\G, B, #, Tgo), are Bernoulli systems. | 

Next we examine the (directional) entropies hu(T~o ). By Thomas' "Addi- 

tion theorem" (see [Th2]) hu(Tgo) = h~(:~) + h(7), where T is the automorphism 

of the group M. Look at the sequence of chambers in / :  connecting the chamber 

Co to goCo. Denote it by Co, C1 , . . . ,  Cd = goCo. Let ki + 1 be the number of 

chambers containing the face Ci n Ci+l. 

THEOREM 2.4: 
d-1  

i=O 

v"~d-1 1 " (E, fi', ~, S) is a Markov system Proof'. We have to show h~(S) = ?---,i=0 og~i. 

in which every symbol has the same number, t, of successive symbols, and the 

transition probabilities are 1/t. Hence h~(S) = logt. It is easy to see that t 

is the number of admissible maps of the complex Co, C1, . . . ,  Cd into A fixing 

Co. The number of possible maps of C1 is k0. Similarly, after determining the 

images of Co, C1 , . . . ,C i  there are ki possible ways of mapping C~+I. Hence 

t = koK1 • .. kd-1. (Note that the image of the face Ci n C~+1 belongs to Ki + 1 
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chambers because there is an automorphism of the building whose restriction to 

Co, C1 , . . . ,  Ci coincides with the admissible map we have chosen so far.) | 

We remark that  the above formula holds also for elements which fix Co. 

In this case the entropy is 0. We assume now that  A is abelian and examine 

the structure of the entropy function: h, :  A --* ]I{ + in the system (F\G,  B, #, A)- 

The apar tment  ,4 is the Coxeter complex corresponding to an affine Weyl group 

W. Let W be the corresponding spherical Weyl group. W is a finite group. Its 

Coxeter complex is a decomposition of ,4 into finitely many convex cones, based 

at a common vertex, denoted O - -  the origin. This decomposition induces a 

decomposition of A into "Weyl chambers". Two elements al ,  a2 E A are said to 

belong to the same Weyl chamber if the corresponding images of O: alO, a20 be- 

long to the same cone in the Coxeter complex of W. Note that  this decomposition 

is not disjoint and the chambers intersect at their boundaries. 

THEOREM 2.5: The function h~: A -* R + is piecewise linear: its restriction to a 

Weyl chamber in A is linear. 

Proof: Since we assume that  A is abelian, the system (F\G,  B, it, A) is a compact  

group extension of the subshift of finite type (ft, .T, r/, A) and the entropy is 

the same as the entropy of the action on ~. Let £ be a subcomplex defined 

as above for an element of A. £ is contained in .4 and Theorem 2.4 gives a 

formula for the entropy of the factor system obtained by restricting to £. This 

is, however, equal to the entropy of the action on Ft, as is easily seen using 

wider and wider neighbourhoods of £ in ,4 and Lemma 2.9. The numbers kl 

appearing in Theorem 2.4 may be defined also as follows. Let P0, P1,. •., Pd-1 

be the hyperplanes separating the chambers Co and goCo in .A. kl + 1 is the 

number of chambers in A which contain a codimension 1 face contained in Pi. 

Ki is well defined independent of the particular face. Fix some chamber in ,4 

containing the given face and the half apar tment  of ,4 containing it bounded by 

Pi. For any other chamber containing this face choose an apar tment  containing it 

as well as the above half apartment.  We obtain, say, k apartments ,  one for each 

adjacent chamber. Note that  the intersection of any two of these apar tments  

is exactly the above half apartment .  It follows that  any chamber in this half 

apar tment  which touches Pi has at least k neighbours via its face in Pi. Hence 

the number k = k~ is independent of the specific face. Consider now two elements 

al ,  a2 E A belonging to the same Weyl chamber. They act on ,4 as translations 
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by vectors vl, v2 respectively. The assumption that  they belong to the same Weyl 

chamber in A means that for any of the linear functionals ~i: ,4 ~ R defining 

the hyperplanes partitioning ,4, 

(2.3) ~i(alO)~i(a20) > O. 

It follows that if Po, P2, . . . ,  Pd-1 are the hyperplanes separating Co from alCo 

and Q0, Q1 , . . . ,  Ql-1 are the hyperplanes separating Co from a2Co, then: 

(1) Q0 + Vl , . . . ,  Ql-1 + vlare the hyperplanes separating alCo from a2alC O. 

(2) P0 , . . . ,  Pd-1, Qo + Vl . . . . .  Qz-1 + Vl are the hyperplanes separating Co 

from a2alCo. 

To complete the proof of the assertion that h~(Tala2) = h , (Tal)  + h,(Ta2), note 

that  since al maps a face in Qi to a face in Qi + vl and al is an automorphism 

of the building, the number of chambers containing a given face in Qi equals the 

number of chambers containing a given face in Qi + vl. II 

3. E x a m p l e s  a n d  app l i c a t i ons  

p-ADIC CHEVALLEY GROUPS. N. Iwahori and H. Matsumoto, [I-M], have shown 

that  a semisimple Chevalley group over Qp, G, has a BN pair so that  the associ- 

ated building is an affine building. G acts strongly transitively on the complete 

apartment system of the building. Hence the results of the previous section 

apply to this case. We note that the Howe-Moore theorem on vanishing of ma- 

trix coefficients implies that for G a semisimple Chevalley group over Qp, the 

action of the split Cartan subgroup on F \ G  for an irreducible lattice F < G is 

mixing (see [Z]). The Caftan subgroup A in these cases is abelian. We shall also 

use the following well known results: 

THEOREM (see [Tam]): A lattice in a semisimple Chevalley group over Qp is 

uniform (i.e., cocompact). 

THEOREM (see [Sel]): If G a semisimple Chevalley group over QB and F < G 

a uniform lattice, then there exists a finite index sublattice F0 < F having no 

torsion. 

Thus we have: 
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THEOREM 3.1: Let G be a semisimple Chevalley group over Qv, F < G an 

irreducible torsion free lattice, A < G a split Cartan subgroup of G, B the Borel 

a-algebra of F\G,  # Haar probability measure on F\G,  T < A the maximal 

compact subgroup of A. 

(1) Let H < A be a closed subgroup, d = rankH (i.e., H / H  ~ T  ~ zd). Then 

there exists a d-dimensional subshift of finite type (fL ~ ,  v, H) on which 

H acts via H / H  A T so that (F\G,  B, ~t, H) is a compact attine extension 

of (~, _~, v, H). When H contains a regular element, the extension is a 

compact group extension. 

(2) The compact A orbits in F \G are dense. 

(3) Let Qv* -~ H' < A be a regular one parameter subgroup, let H = TH' ,  

Haar measure on H normalized so that ~)(T) -- 1. ~ induces a measure 

on compact H orbits in F\G. The measure of a compact H orbit is a 

natural number. Denote by an the number of compact orbits of  measure 

n. an < oo, and 
O 0  

exp d a d x °  - 1 
~=1 din n d e t ( I -  x M )  

where M is the adjacency matrix of a corresponding one-dimensionM 

subshift of finite type. 

(4) (Notations as in (3).) Let #N be the probability measure obtained by 

normalizing the sum of the measures induced from ~ on the compact H 

orbits of measure < N.  Then l img~oo/iN = P in the weak* topology. 

(5) For any g 6 A such that < g > is not compact, the (one-dimensional) 

system (F\G,  B, #, Tg) is Bernoulli. 

(6) The directional entropy function hz: A -* ]~+ is piecewise linear. 

Proof: The assertions follow from Theorems 2.1, 2.2, 2.3, 2.4, 2.5 applied to a 

group G as above. Actually we have shown (1) in the previous section only for 

subgroups H which are either the whole of A or one parameter subgroups of A; 

the treatment of the more general case is a simple adaptation of those cases and 

is omitted. | 

By Selberg's theorem any lattice F < G has a torsion free, finite index sub- 

lattice Fo < F. Hence the above theorem applies to the system (Fo\G, Bo, #o, A). 

There is a natural finite to one covering map Po\G ~ F\G.  It follows that 

(2') The compact A orbits in (F\G,  B, #, A) are dense. 
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(5') For any g E A \ T, (F\G, B, #, Tg) is Bernoulli. 

(6') The directional entropy function h, :  A ~ R + is piecewise linear. 

In the case of a semisimple Chevalley group over Qp the formula for the di- 

rectional entropy (Theorem 2.4) is especially simple. We shall need the following 

result of N. Iwahori and H. Matsumoto. 

THEOREM (see [I-M] proposition 2.6): Let G be a semisimple Chevalley group 

over QB, A its afline building. Then every codimension 1 face of A belongs to 

exactly p + 1 chambers. 

Combined with Theorem 2.4 we have for g C A that h,(Tg) = A(g)logp, 

where A(g) is the number of hyperplanes separating a chamber C c .4 from its 

translate gC. 

CLAIM (see [I-M] proposition 1.10): For all g E A, A(g) equals the length l(g) 

of the image of g in the aft/he Weyl group N ( A ) / T  with respect to the standard 

generators. 

COROLLARY 3.1: For g E A, h~(Tg) = l(g) logp. 

N. Iwahori and H. Matsumoto give a formula for l(g) (see [I-M] section 

1.9, p. 20). We will use a slightly modified form of this formula since we prefer 

viewing the roots of (G, A) as homomorphisms from A to Qp*. Notice that the 

formula is based on the fact that  one can interpret the roots as linear functionals 

on the apartment ,4 and the hyperplanes separating ,4 into chambers are the 

hyperplanes where these functionals have integral values. 

PROPOSITION 3.2 (see [I-M] 1.9): Let • be the root system of (G, A), (I)+ C (I) 

the positive roots. Then 

l(g) logp = A(g)logp -- ~ ]log I (g)lpl = l°g + ]~(g)lp 

where [Xlp = p-~(x) is the p-adic absolute value of x, and log + y - logy for y > 1 

and 0 otherwise. 

COROLLARY 3.3: For g E A, h~(Tg) = ~ log + [~(g)lp. 

Let H be a semisimple Lie group over ~ and ¢H its root system with respect 

to some Cartan subgroup AH < H. Notice that for h E AH, {~(h) ( ~ E ¢H} 

are the eigenvalues of Ad(h) acting on the Lie algebra of H. It follows that these 
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are the Lyapunov exponents of the system (FH\H, ~H, [-tH, Th) (where FH < H 

is a lattice, and Th: FH\H ---+ FH\H translation by h). Hence by Pesin's formula 

(see [Mafi~], Corollary 10.3, p. 265): 

h , , ( T h )  = E l°g+ I~(h)l. 

So the formula in Corollary a.a is a p-adic analog of the formula obtained in the 

real case via Pesin's theorem. 

We examine now some specific groups. Let G = PSL(2, Qp). It is a rank 

one group and the corresponding affine building A is a p + 1-regular tree (see 

[Ser]). An apartment is an infinite line in the tree. For a torsion free lattice 

F < G the quotient complex Y = F \A  is a finite p + I-regular graph. Both A 

and Y are bipartite (2-colorable). Fix some 2-coloring. The subshift of finite type 

we obtain for this case is the space of all bi-infinite paths in the graph Y with no 

"folding" and such that at time 0 the path visits a vertex of a fixed color. The 

case of PSL2(1~) corresponds to the familiar geodesic flow on a Riemann surface. 

The fact that  the geodesic flow is Bernoulli was proved by D. Ornstein and B. 

Weiss (see [O-W], [Oi]). 

Let G = PSL3(Qp). It is a rank 2 group. The corresponding building is 

a two dimensional simplieial complex. An apartment is isomorphic to a plane 

tesselated by equilateral triangles. 

Figure 3.1 

Each edge belongs to p + 1 triangles. The Cartan subgroup is conjugate to 



276 S. MOZES Isr. J. Math. 

Denote by T = ~2 E A I ~1, ~2, ~3 C Zp* . The spherical Weyl 
A3 

group of G is $3. A is decomposed into 6 Weyl chambers: T E $3; 

A.~ = A2 E A I Vp(A~(1)) <_ Vp(A,(2)) _< Vp(Ar(3)) 
~3 

(Vp(.) is the p-adic valuation). See Figure 3.1. 

We describe two applications of the tools developed above relating to G = 

PSL(3, Qp). 

CLOSURES OF A ORBITS. We have seen that  there are many compact A-orbits 

in F\G.  An interesting question raised by H. Furstenberg and by G. A. Margulis 

is what are the possible closed A-invariant subsets of F\G.  There has been a 

lot of work concerning the possible closures of orbits of subgroups generated by 

unipotents in homogeneous spaces of a real Lie group. M. Ratner has proved the 

Raghunathan conjecture which states that such a closure is again an orbit, but of 

a possibly larger subgroup. (See IRa], [Margl], [Marg2], [D-M].) It is well known 

that  for G = PSL(2, JR) and A < G its Cartan subgroup, there are orbits whose 

closure is not even a manifold. G. A. Margulis has conjectured in his ICM90 

talk ([Marg2]) that  for higher rank (real Lie) groups, if the closure, in r \ a ,  of 

an orbit under the Cartan is compact, then it is already an orbit, under the 

additional condition that the lattice F does not contain any semisimple element 

with multiple eigenvalue. The necessity of such a condition was shown by M. Rees 

([Re]). We will indicate here how one can see the necessity of such a condition 

also for G = PSL(3, Qp) using the symbolic description developed above. 

Let F < G = PSL(3, Qp) be a lattice. Assume that  there exists a semisimple 

element 70 C F which has a multiple eigenvalue. By examining the characteristic 

polynomial of ~/o it is not hard to see that  either 7o or .y2 is diagonalizable over 

Qp. We assume, w.l.o.g., that 7o = gaog -1 where 

a0 = A A -2 E A. 

Let ~ be the two dimensional subshift of finite type associated with 

(F\G, B,/~, A). ao induces on A as a shift parallel to one of its tesselation lines. 
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Let fl 0 = {w C ~ I Sno w = w}. It  is readily seen that  g/o is a subshift of finite 

type. I t  follows from the commutat iv i ty  of A that  ~0 is invariant under A. A 

acts on it via A / T  ~- Z 2. Since ao acts trivially on f/o, it follows that  A acts 

on ~0 via A~ < T, ao > ~  Z × Cr where Cr is a cyclic group of order r. Let 

~lo = flo/C~ be the quotient system. 

LEMMA 3.4: ~o is a one dimensional subshift of  finite type containing infinitely 

many  points. 

Proof." The fact that  ~o is a one dimensional subshift of finite type follows from 

the preceding discussion. For t E Qp let 

ut = 1 . 
0 

Since 70 = go~og -1, we have Fgao -- Fg. Hence the image of Fg in ~ is in 

~o, hence giving an element in ~o- Moreover, since lttol 0 = OloUt it follows that  

Fgutao = Fgut for every t E Qp and each of these defines an element of f/0. 

Examining the way ut acts on A (which is by fixing half a plane bounded by a 

line parallel to the translation direction of a0 's  action) one sees that  all these 

elements are distinct. I 

Notice that  if a one dimensional subshift of finite type contains infinitely 

many points, then it has points whose orbit closure has arbitrarily small Hausdorff 

dimension. Now take such a point & and look at a preimage Fx of it in F \G.  

The closure of F x A  is mapped to the closure of the A-orbit of o0. Since there are 

only finitely many possible Hausdorff dimensions for closed orbits of subgroups 

of G, it follows that  we can choose & so that  the obtained orbit closure is not an 

orbit. 

The second application we give is the following: 

PROPOSITION 3.5: There exist two two-dimensional subshifts of  finite type, 

(~, ~ ,  u, Z2), (E, A/I, ~, Z2), so that for every v C Z 2 the corresponding 

one-dimensional systems are both isomorphic Bernoulli systems, but the systems 

are not isomorphic as Z 2 systems. 

Proof: The first system, (~'/,3r, p, Z2), is the two-dimensional subshift con- 

structed for G = PSL(3, Q2), F < G any uniform lattice and A <: G the Caf tan  

subgroup. Z 2 acts on 1-1 via A / T  ~ Z 2. The second system (E,A/1,u,Z 2) is 



defined as follows: the elements of E are all the labellings of the chambers of ,4 

by elements of Z/2Z so that for any chamber the sum of the labels of the three 

chambers adjacent to it is 0. See Figure 3.2: 

x+y+z=0 

Figure 3.2 
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E is a compact abelian group, let u be the normalized Haar measure on it. 

Again Z ~ acts by translations of the apartment .4 via A/T -- Z 2. This system 

is a variant of the Ledrappier system. It is 2-mixing but not 3-mixing (see [Le]). 

By results of B. Kitchens and K. Schmidt, and of D. Lind (see [K-S1] Theorem 

1.8, Proposition 2.12, Proposition 4.6), for every nonzero (n, rn) E Z 2 the corre- 

sponding one dimensional system (E, A/t, u, T(~,m)) is Bernoulli and its entropy is 

the same as that of the corresponding one dimensional system (~/, Y, #, S(n,m)). 
(Kitchens and Schmidt prove that the directional entropy function of this (and 

many other) system is piecewise linear. One can check that the "linearity cones" 

are the same and that the entropy coincides for translations by elements of Z 2 

which form bases for these cones.) Thus for any (n, m) E Z 2 the corresponding 

one dimensional systems are isomorphic. On the other hand, in [Mozl] it is shown 

that  the system (PGL(3, Q2 ), B, tt, G), and hence also (Ft, ~', p, A), is mixing of 

all orders. Hence the systems are not isomorphic as 2-dimensional systems. | 

A QUATERNION LATTICE IN G : PGL(2, Qp) x PGL(2, Q2). In this section we 

examine a specific example and describe explicitly the corresponding subshift of 

finite type. Let G = PGL(2,Qp) × PGL(2,Qt) where p,l -- 1 (mod 4) are two 

distinct primes. The building A associated with G is the product of the buildings 

AB and Al associated with PGL(2, Qp) and PGL(2, Q~), i.e., it is the product of 

two regular trees of degree p + 1 and 1 + 1 respectively. The cells of A are squares 

corresponding to products of two edges. An apartment in A is the product of 

apartments in Ap and Al, i.e., a plane tesselated by squares. Let Op E Ap (resp. 

O~ E At) be the vertex stabilized by PGL(2, Zp) (resp. PGL(2, Zl)). Fix a Caftan 



Vol. 90, 1995 ACTIONS OF CARTAN SUBGROUPS 279 

subgroup of G: 

~_,  , u_ 1 J A e Q ~ ,  u e Q ~  

The stabilizer of the apartment .4 associated with A is: 

Notice that G does not preserve the labelling of the building. Let H be the ratio- 

nal quaternions, ]E(Z) the integer quaternions. Let ¢: H --* G be the embedding: 

¢(Xo + x l i +  x2j + x3k) 

= ( (  Xo+xl ip  x2 + X3ip ~ ( xo +x l i l  xe + x3 iz ) )  
- x 2 + x 3 i p  x o - x l i p / '  - x 2 + x 3 i l  X o - x l i t  

where ip E Qp and iz E Ql satisfy ip 2 = -1 ,  iz 2 = -1 .  

Define F = {x = xo + xli  + x2j + x3k • ]HI(Z) I x -- l (mod 2) Ix] 2 = prl~} .  

It follows that F = ¢(F) is a uniform lattice in G (see [Tam]). 

PROPOSITION 3.6: F is torsion tree. 

Proof:  Let x = x o + x l i + x 2 j + x 3 k  • F \ Q .  We have to show that no 

(nonzero) power of the matrix 

Xo + x , i  x2 + x3i  
M = \ - x 2  + x3i  Xo - x l i  ] • GL2(C) 

is a scalar matrix. The eigenvalues of M are the roots Ul, u2 of the polynomial 

z 2 - 2XoZ + prl  ~ where ]xl 2 = p~l s. We have to verify that  for d • N, Ul d # u2 d. 

Recall that p, l -- l (mod 4), xo --- l (mod 2). Denote: 

xo = l + 2b, p~l ~ = l + 4k,  c = k - b - b  2 

Then 

u l = x 0 + 2 v ~ i ,  u 2 = x 0 - 2 v ~ i ,  cCl~. 

If u d = u d then u l / u 2  is, w.l.o.g., a primitive root of unity of order d. Since 

u l / u 2  belongs to a quadratic extension of Q, d = 1, 2, 3, 4 or 6. 

(1) d # 1 because c > 0. 

(2) d # 2 because Xo # 0. 
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(3) d # 3. We have 

u 3 = xo(x~ - 12c) + (6a 2 - 8c)v/ci, 

u 3 = Xo(X~o - 12c) - (6a~ - 8c)x/ci. 

Since xo is odd 6x~ - 8c # 0, hence u 3 # u32. 

(4) d # 4. Otherwise Ul/U2 = +i, hence xo = +2x/~ which is impossible 

since 2v~ is either even or irrational whereas Xo is odd. 

(5) d # 6. Assume that u l / u 2  is a root of unity of order 6 (exactly). Since 

Ul = u2 it follows that the angle between ul and the real axis is 7r/6. 

W.l.o.g. xo > 0. 

- tanTr/6 = l /v /2  ~ 2 v / ~  = x0. 
Xo 

This is impossible since 2 x / ~  is either even or irrational whereas xo is 

odd. 

It follows that no power of M is scalar and hence F is torsion free. | 

Define 

I Ixl2 =p  r, r N}, Fp = ~)(f'p), 

rz = ¢ ( r z ) .  

Notice that 

Fp C PGL(2, Qp) × PGL(2, Zt) Fl C PGL(2, Zp) × PGL(2, Qz). 

THEOREM (see fLu] Lemma 7.4.1): The project ion of Fp in PGL(2, Qp) is a lat- 

tice acting transi t ively on the vertices of  the tree Ap associated wi th  PGL(2, Qp). 

Similarly for Ft, PGL(2, Q~ ). 

PROPOSITION 3.7: F acts freely transi t ively on the vertices of A. 

Proof." Since F is torsion free it follows that the action is free (a stabilizer is 

a compact subgroup which must be finite because F is discrete). Denote O = 

(Op, O~) E A. Let (x, y) e A be any vertex. We will show that there exists 3' C F 

of the form 7 = 717p, 7p C Fp, 7l E Fl so that 7 0  = (70p,  7Or) = (x, y). (G acts 

on each of the trees Ap, A t via its projection on the corresponding group.) Since 
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Ft acts (freely) transitively on the vertices of At there exists (unique) 7t E F t  

so that  7tOt = y. Let x '  = 7~-1x GAp .  There exists (unique) 7p E Fp so that  

~pOp = x'. Let 7 = 717p. It  satisfies: 

7 0  = (7t7~0, ,  7tTpot) = (7~z', 7~0~) = (x, y). 

Notice that  in the same way it follows that  there exists 7'  C FpFl so that  

"/(Op, 0~) = (x,y).  , 

COROLLARY 3.8: F = FpFl = FIFp and the decomposition is unique. 

Proof." Since F acts freely on the vertices of the building it follows that  if 7 0  = 

7 ' 0  then 3' = 7'- The proof of Proposition 3.7 shows that  for any 7 C F there are 

7' E FpFl and 3" E FIFp such that  7 0  = 7 ' 0  = 7"0 ;  hence F = FpFI = F1Fp. 

To see the uniqueness of the decomposition let 7p, 7'p C Fp, 7t, 7'z E F t  so that  

7 = 7p7l = 7'p7'~. Examine the action of 7 on Op CAp.  70p = 7pT~Op = 7pOp 

as well a s  FOp = ~ [ t p ' ~ t l O  p = ~'tpOp. Since Fp acts freely on A v it follows that  

7v = "~'v hence also 7t = 7't- The uniqueness of the factorization F = FtFp is 

shown in the same way. | 

Let 

= { a E F i l a l 2 = p } ,  A = ~ ( ~ ) ,  

~ = { a G F ]  ] a i 2 = p } ,  1 3 = ~ ( ~ ) .  

THEOREM (see fLu]): IA[ = p + 1. Fp -=< A > is a free group with (p + 1)/2 

generators. A is a symmetric set of generators. IB] = 1 + 1. Fl =< 13 > is a free 

group with (l + 1)/2 generators. 13 is a symmetric set of generators. 

An element a E A is the image of a matr ix  with determinant p, hence it 

maps the vertex Op E Ap to one of its neighbours (see [Ser]). Since Fv acts freely 

it follows that  the p + 1 elements of A maps Op to the p + 1 vertices adjacent to 

Op. Similar assertions hold for Fl. Recall that  Fp C stabOl, Fl C stabOp. We 

conclude that:  

PROPOSITION 3.9: 

(1) The elements of A c F map the vertex 0 = (Op, O~) E A to the p + 1 

adjacent vertices (x, 0l)  (x E Ap adjacent to Or). 

(2) The elements of B C F map  the vertex 0 = ( O p ,  Ol) E A to the l + 1 

adjacent vertices (Or, y) (y C Al adjacent to Or). 
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Note that  the above vertices {(x, Ol), (Op, y)} are exactly all the vertices 

adjacent to 0 = (Op, Oz) in the 1-skeleton of A. 

PROPOSITION 3.10: The 1-skeleton of A can be identified with the (right) Cayley 

graph of F with respect to the generators A U B. 

Proof'. We have already shown that 7 ~ 7 0  is a one to one correspondence 

between the elements of F and the vertices of the building A. Since the action of 

F on A preserve adjacency relations, it follows that the vertices corresponding to 

7, "Y~ E F are adjacent if and only if the vertices O and 7-1"~O are adjacent, which 

is equivalent by Proposition 3.9 to 7-17 ' E A U B. Hence this correspondence 

identifies the 1-skeleton of A with the right Cayley graph of F. I 

We obtain a labelling of the oriented edges of A by the elements of A U B. 

Note that if we follow some closed path along the edges and multiply the labels, 

we obtain the identity. Hence: 

COROLLARY 3.11: A B  = B A  (in a unique way). 

This together with the fact that F acts freely transitively on the vertices 

and preserves the labelling of the edges by A U B give the following description 

of the quotient complex F \A.  

THEOREM 3.2: The complex Y = F \A  has a single vertex, (p + 1)/2 + (1 + 1)/2 

edges and (p + 1)(l + 1) faces (squares). (p + 1)/2 of the edges are labelled, after 

being oriented, by the elements of A s.t. the opposite orientations are labeled by 

an element and its inverse. Similarly, the other (l + 1)/2 edges are labelled by 

the elements of B__. For any a E A A_, b E B there exists a unique pair a' E A, b t E B__ 

so that ab = b' a'. Corresponding to them is a square whose edges are labeled as 

in Figure 3.3. 

a a '  

b ~ 

Figure 3.3 
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Each such square is glued to the 1-skeleton so that its vertices are identified 

with the single vertex and the edges are glued according to the coloring (together 

with orientation). 

This finite complex defines a two-dimensional subshift of finite type fl. 

Call an edge of Y which is labelled by an element of A (resp. B) vertical (resp. 

horizontal). An element f C fl may be identified with a labelling of the (oriented) 

edges of an apar tment  A (which is a plane tesselated by squares) by the elements 

of A U B (we always label the two orientations of an edge by reciprocal elements) 

so that: 

(1) Vertical edges are labelled by elements of A. 

(2) Horizontal edges are labelled by elements of B. 

(3) Two consecutive edges are not labelled by reciprocal elements. 

(4) If we look at any four edges of a square, oriented counter-clockwise, and 

multiply their labels cyclically, then the product is the identity. 

The group Z 2 ~ A / T  acts on f~. Denote the action by S,: f~ --+ ~ for 

v C Z 2. The action of A / T  ~ Z 2 on .4 enables us to associate with every 

element of Z 2 a vertex in A (after a choice of an origin). For co E f t ,  define 

the "stabilizer lattice" £~ = {v C Z 2 IS~co = co}. For co E f~ and u ,v  E Z 2 

let co(u,v) E F be the product of the elements of F written along any pa th  

of edges from the vertex corresponding to u to the vertex corresponding to v 

(notice that  co(u, v) is independent of the path). For a periodic point co E f l  let 

c(co) = v) I e ,c,.,}. 

PROPOSITION 3.12: rank£~ ----- 0, 2; i.e., if  w E ~ has a period in some direction, 

it has a period also in another direction (and hence a t~nite Z 2 orbit). 

Proof Assume r a n k £ ~  > 0. If there is some v = (s, r) E £~ such that  IrI, IsI > 0 

then it follows, see Proposition 2.14, that  w is a periodic point and r a n k £ ~  = 2. 

Assume that  s = 0, r > 0 (the case s ¢ 0, r = 0 is dealt with in a similar way). 

This implies that  co is determined by its restriction to a fundamental  domain for 

the action of Zv on A, which we can take to be a horizontal strip of height r. The 

labelling of the upper and lower boundary edges of the strip is identical. Denote 

this sequence of labels by (bl)iez. For each vertical section of the strip of height 

r multiply the labels and denote the sequence of elements obtained by (ai)iez.  

See Figure 3.4. 
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b b, b,+, 

{~s-I O~ i_ 1 0[. O[ i + 1 Of r 

b, b,+, b 

Let 3~ = l-IJk=ibk E F,. 

finite type ft that 

Figure 3.4 

It follows from the definition of the subshift of 

• J J . O~/~iq_ 1 = 3 i+10L3,  0 ~ i - 1 ( 3 / )  - 1  (l~ i "~--10~--1 = ',r~m J m - - l "  

Apply these to the vertex Oz E Al: 

O~i~3f'q_lOl ~ 'q_ lO~jO,  J = = fli+lOl, 

--1 i --1 i --1 - 1  i --1 Oz =  m_lo, = (3m) 

This means that  for any i E Z the sequence of vertices (-..  (fl~_l)-lOe, 
i --1 i --1 i + 1  ~i+2,,-~ (3~-1) Oe,(3~) Oe, Oe,3i+lOe, . . . )  are all fixed by a~. These ver- bPi+I t-]£, 

tices lie along an infinite line in the tree Al. A nontrivial element a~ E Fp has at 

most one fixed line in the tree At. It follows that the vertices ((3~)-1Ot) (m _< 

i, Ol, flJ+lot) (j > i) are determined by ai together with a choice of orientation 

of its fixed line. This implies that  the pair (ai, bi+l) determines the labelling of 

the whole horizontal strip. Since the number of such pairs is finite, some pairs 

repeat along the strip and it follows that the labelling of the strip is periodic. 

Hence rank £~ = 2. I 

PROPOSITION 3.13: Let  w E Ft be a periodic point. Then 

(1) G(w) is a free abelian group of rank 2. 

(2) G(w) determines w up to (4 fold) symmetry.  

(3) G(w) is determined by any e ~ 7 E G(~:). 
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Proof: 

(2) 

(3) 

For u, v E £~, w(u, v) = w(v, U) -1. For u, v, w, t E £~ the periodicity of 

w implies that  v + t - w E £~ and w(w, t) = w(v, v + t - w). Hence 

t )  = v ) . 4 v ,  v + t - = v + t - e 

Hence G(w) is a group. The above also shows that the map X: £~ --~ G(~v) 

defined by ~((u) = w((0, 0), u) is an epimorphism. Notice that  if we lift the 

map w: A --* Y to a map &: ,4 --* A so that the vertex corresponding to 

(0, 0) is mapped to the vertex O = (Op, Oz) (which corresponds to e E F), 

then for any u E £~ the vertex u is mapped to ~((0, 0), u)O = X(u)O. It 

follows from the fact that & is an embedding of ,4 in A that  X is injective. 

Hence G(w) is isomorphic to £~ a free abelian group of rank 2. 

Choose '7 E G(~) \ (Fp  t2 Fz) (it exists since G(w) is a free abelian group 

of rank 2). Let '7 ---- a/3 where c~ E Fp, ~ EFt  are both nontrivial. Denote 

by r > 0 the length of a as a word in the generators A of the free group 

Fp. Denote by s > 0 the length of ~ as a word in the generators B_B_ 

of the free group Fl. It follows that '7 equals one of the following four 

possibilities: w((0, 0), (=t=r, i s ) ) .  Each of these determines the sequence of 

labels written along a zigzagging line in the apartment which determines 

the whole element w. We conclude that there are four possible elements 

of ~t corresponding to the same group G(w). These elements are related 

to one another by reflecting along the horizontal and vertical axis through 

the origin of ,4. 

The above shows that an element of G(w) \ ( F p  U F/) determines the 

point w (up to symmetry) and hence the group G(c~). We have to deal 

separately with the case of nontrivial '7 E G(w) N (Fp U Fz). Assume, for 

example, e ~ '7 E G(w)•Fp. Assume that  there, for some periodic w' E ~, 

"7 E G(w'). Notice that both G(w) N Ft ~ {e} and G(w') AFt ¢ {e}. Also 

G(cJ) n Ft, G ( J )  n Ft C Centralizerr~ ('7). By considering the centralizer 

of the quaternion corresponding to ~/in Ft we see, using the fact that  this 

quaternion is not in Q, that Centralizerr, ('7) is a (nontrivial) commutative 

subgroup of the free group Ft; hence it is a cyclic subgroup of Ft. It follows 

that  there exists some nontrivial element "~ E G(w) N G ( J )  N Ft. Hence 

we obtain an element 7"Y' E (G(w) M G(w')) "-(Fp U Ft) which, by the 

above, implies that  G(w) = G(w'). I 
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I t  will be convenient also to th ink abou t  the symbols  wr i t ten  on the edges as 

integral  quaternions  ra ther  than  elements of F C PGL(2 ,  Qp) × PGL(2 ,  Q2). We 

will abuse no ta t ion  and refer to elements bo th  as quaternions and as elements  of G 

(we will take an integral  qua tern ion  with relat ively pr ime coefficients represent ing 

the element) .  Let  T: H(Q)  \ Q ~ •2(Q) be defined by: T(Xo + x l i  + x2j + x3k) = 

(Xl: x2: x3). Two quaternions x , y  C H ( Q ) ' - Q  commute  if and only if T(X) = 

PROPOSITION 3.14: Let w be a periodic point and G(w) be the corresponding 

group. Then G(w) is determined by the point T('y) = (C1: C2: e3) C ]~2(Q) 
corresponding to a quaternion representing any nontrivial element 7 C G(w). 

Proof." Let w, w' C f~ be two periodic points  so tha t  there are nontr ivial  e lements  

"y c G(~) ,  "~' E G(w')  so tha t  T(~/) = ~-(~/'). We m a y  assume wi thout  loss of 

general i ty tha t  % 1" E Fz (clearly the image under  7 of any nontr ivial  element 

in an abel ian group doesn ' t  depend on the par t icular  element).  We see tha t  

< ff > and < "y~ > are cyclic subgroups  of a free group which c o m m u t e  with  each 

other. Hence they have a nontr ivial  intersection, i.e., we obta in  some e ~ ~/" E 

G(w) M G(w');  hence it follows tha t  G(w) = G ( J ) .  I 

Let  ~ = (cl : c2 : c3) C p2(Q).  Associate wi th  it a quadra t ic  form Qe(x,y)  

as follows: we m a y  assume tha t  Cl,C2, C 3 C Z and are relat ively prime. Let 

n = c 2 + c22 + c 2 and define Qe(x, y) = x 2 + 4ny 2. We will say tha t  the form Qe 

represents  prlS if there are x, y C Z relatively pr ime to each other  and to pl so 

t ha t  prlS = Qe(x, y). (Notice tha t  this implies tha t  also gcd(n,pl) = 1.) 

PROPOSITION 3.15: ~ = (Cl : C2 : c3) E p2(Q) corresponds to a periodic point 

w C ~ if  and only i fQe represents prlS for some r, s >_ 1. 

Proof: Let  w E ~2 be a periodic point  and ~ E ]?2(Q) be the corresponding 

point.  Let ~ = (c1: c2: c3) wi th  Cl, c2, c3 E Z relat ively prime,  n = c~ + c~ + c~. 

Choose a quatern ion z = zo + zli  + z2j + z3k = w((0, 0), (r, s)) E G(w) for some 

r,s  E 1~, ( r , s )  E £:~. z --- X(mod2) ,  (zx: z2: z3) = e, ]z[ 2 = p~l ~. Define 

xo = Zo, Yo = z l /2c l  = z2/2c2 = z3/2c3. I t  follows tha t  p~l ~ = x~ + 4ny~ = 

Q~(xo,yo). We have to show tha t  gcd(xoYo,pl) = 1. Consider z 2 = (x 2 - 

4ny 2) + 2Xozli + 2xoz2j + 2xoz3k E G(w). The  corresponding ver tex  z20  E A 

is at  a dis tance of 2s horizontal  edges and 2r vertical  edges (this follows f rom 

considering the lifting of w to a m a p  of A to the building A).  [z2[ 2 = p2rl2s; hence 
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gcd(xo 2 - 4ny~, 2xozl,  2Xoz2, 2x0z3) = 1, otherwise they would be divisible by p 

or l and the quaternion z 2 would have been equivalent to a quaternion of smaller 

absolute value, which would have implied that  the vertex z20  is closer to O. 

Hence gcd(xo,pl)  = 1; otherwise if, for example, plxo, then since plzg + 4nyg 
pl4nyg we conclude tha t  p divides all the coefficients of z 2. Similarly god(y0, pl) = 

1. If, for example, PlYo then also plxo. 

Conversely, assume ~ = (el :c2 :c3) c I?2(Q), cl, c2, c3 E Z relatively prime, 

n = c~ + c~ + c~ and there exists a representation prl ~ = Qe(xo, yo) = X2o + 4nyg 

for some r, s c H with gcd(xoYo,pl) = 1. Define a quaternion z = Xo + 2yocli + 

2yoc2j+2yoc3k. Notice that  z - l ( m o d  2), Izl 2 = S l "  and zo + zl i  + z2j + zak E 

F (we abuse nota t ion and identify 1:" and F). We can decompose z = al3 where 

ct C Fp, /3 E Fl. Define a tiling a~ as follows. Write a and /3  periodically along a 

zigzagging line in A as in Figure 3.5. 

mmmmmmm  

(~ 

(~' 

Figure 3.5 

Let a p E Fp, /3P ~ Fz be so tha t  a13 = / Y a  t. In  order tha t  this labelling be 

par t  of a legal element of f~, it is necessary and sufficient tha t  bo th  ct 'a  and/3/3 / 

will be reduced words in the corresponding free groups Fp and Fz. The word a~a 

is not reduced if a begins by a quaternion a C A and a I ends with the quaternion 

E A. This implies tha t  p = ~alala. Similarly, if /3/31 is not reduced then 

ll/3/Y. Thus  if either of them is not reduced then p or l divides the quaternion 

z 2 = a/3/3'a' =/3'a'a/3. Notice tha t  z 2 = (X2o - 4ny~) + 4xoYo(cli + c2j + c3k). 

Hence if, for example, plz 2, then plx~ - 4ny 2. Since also plprP = x~ + 4ny2o it 

follows tha t  plxo contrary  to the assumption. It follows tha t  a~a and /3/31 are 

reduced and the above labelling can be completed to a legal labelling of the whole 

apar tment  giving w E ft. Moreover, since the original zigzagging labelling was 
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periodic, w is a periodic point. Clearly z E G(w), hence ~ = T(z) corresponds to 

a periodic point. | 

We remark that  it follows from Propositions 3.13, 3.14, 3.15 and their proofs 

that  G(w) is its own centralizer in F. Starting with a periodic point w E f~ we 

obtained a quadratic form which we will denote by Q~. We will see next that  

the quadratic form determines the "period", /2~, of w. 

PROPOSITION 3.16: Let  w E ~2 be a periodic point,  Q ~ ( x , y )  = x 2 + 4ny 2 the 

quadratic form corresponding to it. Le t  K = Q ( x / ~ ) ,  (9 = Z + 2v/-AnZ an order 

in K .  Then  p, 1 split in (9, i.e., pO  -- PIP2, lO = L1L2 where P1, P2, L1, L2 are 

ideals in O. These ideals m a y  be viewed as elements  o f  the class group, Cl(O),  

o f  the ideals o f  norm relatively pr ime to the index, 2 f , o f  O in OK,  the max imal  

order of  K .  n = df 2 where d is squarefree. Wi thou t  loss o f  generality (up to 

exchanging P1 with P2 and /or  L1 with L2), £~o = {(s , r )  • Z 2 I P~L~ = id}. 

Proof." There exists a basis {(sl,  r l) ,  (s2, r2)} for/2~o such that  r l ,  sl ,  r2, s2 • H. 

Let z = z0 + zli + z2j + z3k = w((0, 0), (sl, r l )) ,  y = z l / 2c l  = z2/2c2 = z3/2c3, 

x -- zo. p n  lS~ = x 2 + 4ny2 and gcd(x, pl) = 1. Hence the ideals p(9, l(9 split 

in O. Notice that  gcd(n, pl) = 1. u = x + 2 y v ~  • (9 generated an ideal u(9 

with norm p n i  s, = x 2 + 4ny2 which is relatively prime to the index 2f  of (9 

in (gg. It  follows from the unique factorization of such ideals in (9 that  w.l.o.g. 

u(9 = p~l L~ (notice that  u(9 ~ p(9, hence in the factorization of u(9 only one 

of P1 or P2 appears; similarly only one of Lt or L2 appears).  (For properties of 

factorization of ideals and class groups see [C], [La].) It  follows that  P ~  L~' = id 

in Cl((9). The same considerations applied to (s2, r2) give, via the quaternion 

Z' = W((0, 0), (S2, r2)), an element u' • (9 so that  u'(9 ~2 $2 = Pi L j  . We have to 

show that  i -- j = 1. 

u = x + 2y~C-n,  z = x + 2 y ( o i  + c2j + c3k), 

u' = x'  + 2y'v/-L-n, z' = x'  + 2y '(cl i  + c2j + c3k). 

Examine the products: 

zz '  = xx '  - 4yy~n + 2(xy '  + x ' y ) (c l i  + c2j + c3k), 

uu'  = xx '  - 4yy 'n  + 2(xy '  + x'  y)v/-L-n. 

Since rl~ 81, r2, 82 ~ 1, 

; z '  = o), (Sl + s2, n + 
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Hence gcd(xx  ~ - 4yyln,pl) = 1. It  follows tha t  the ideal uuP(9 is not divisible by 

p(9 or I(9. Since uu'(9 = u(gu'(9 = p~l LSl 1 p(2 L~2 it follows tha t  i = j = 1. Since 

E~ = ((s l , r l ) , (s2 ,  r2)) it follows tha t  t;~ C { ( s , r )  • Z 2 I P~L~ = id}. Assume 

tha t  for some (s ,r)  • N 2, P~L~ = id in Cl((9). I t  follows tha t  there exists u = x +  

2 y v / Z n  • (9 and x2 +4ny 2 = p~l ~. Define z = x + 2y(cl i+c2j+c3k).  [zl 2 = p~l ~, 

x is odd, hence z • ['. z commutes  with G(w); since G(w) is its own centralizer it 

follows tha t  z • G(w). Hence (s,r) • 1:,,, i.e., { ( s , r )  • Z 2 [ P~L~ = id} C~N ~ C 

E~o. It  follows tha t  {(s, r)  • Z z [ / :~n~ = id} C Kw. | 

Let r3(n) denote  the number  of representa t ions  of n • N as the 

(ordered) sum of three relat ively pr ime integers. For (s, r)  • N 2 let 

For k ¢ N let 

b k = # { c o E f t  [ the orbit  of w has size k}. 

PROPOSITION 3.17: Given rt C N denote O,~ = Z + 2 v / z ~ Z .  Then 

(1) a(s,r) ---- 4 ~n6Ii(s,r)r3(n) + 2 ~-~neI2(s,r) r3(n)  where 

I1(s,7") = {n C N [pO,  = P1P2, lO,  = LIL2, P[L~ = id, P[Li  = id}, 

I2(s,r) = {n E N I pO,~ = PIP2, lO,  = L1L2, P[L~ = id, P[L~ ¢ id or 

P[n~ ¢ id, P[n~ = id}. 

(2) bk = 4 ~ e ~ ( k )  r3(n) where 

I(k)  = {n C N I POn = P1P2, lOn= LIL2, #<P1, L1} = k}. 

Proof: We verify (2) first. The  orbit  of a periodic point  w E f t  has size k if 

and only if E~ is of index k in Z 2 which, by Propos i t ion  3.16, is equivalent  to 

7~(P1, L1} = k. Thus  the points  whose orbit  size is k correspond to quadra t ic  

forms x 2 + 4ny 2 such tha t  n E I(k).  To each such quadra t ic  form correspond 

ra(n)  points  in ~,2(Q). Each of these points  corresponds to exact ly  four different 

points  in f~ (see Propos i t ion  3.13). Notice t ha t  the four points  are ob ta ined  f rom 

one another  by reflection at  the horizontal  and vertical  axis th rough  the origin, 

all have the same  orbi t  size and  are dist inct  (because two consecutive edges are 

never labeled by an element  and its inverse (conjugate)) .  We tu rn  to (1). By 
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Proposition 3.16, if w • ~t satisfies S(s,~)w = w then, up to exchanging P1 with 

P2 and/or  L1 with L~, P~L~ = id in the corresponding class group. Conversely, 

the latter equality implies that either S(~x)w = w or S(~,_~)w = w, where both 

hold simultaneously exactly when the corresponding n belongs to I i (s ,  r). We 

conclude that each w • ~ such that S(s,~)w = w corresponds to a quadratic form 

x 2 + 4ny 2 such that n • I i(s ,  r) W I2(s, r). To a quadratic form correspond four 

periodic points in ~ (see Proposition 3.13). Of these, 2 or 4 satisfy S(~,~)w = w 

according to whether n • I2(s ,r)  or n • I i ( s , r ) .  I 

The subshift of finite type ~t may be viewed as a subset of S z2 where the 

set of symbols S is the collection of (p + 1 ) ( /+  1) unit squares whose edges are 

labeled by the elements of A U B according to the rules defined above, and such 

that the adjacency rules are defined by two 0 - 1 matrices: H defining the legal 

horizontal adjacencies, and V defining the legal vertical adjacencies. From the 

definition of ~t and Corollary 3.11 it follows that if two symbols x, y • S may be 

neighbours at positions (i, j )  and (i + 1, j  + 1), then there exist unique possible 

symbols e, f • S at positions (i + 1,j) ,  ( i , j  + 1) respectively. This implies that 

the two matrices H, V commute. This implies that for s, r >_ 1, a(~x) -- t r H ~ V L  

It follows that: 

F(sx)(z)  = exp ( E a(nsn~) zn ) = 1 
n ~ d e t ( l -  zHsVr )"  

n~_l 

We end our discussion of the structure of the periodic points of this system 

by observing that there are in general several orbits of the same "shape": 

PROPOSITION 3.18: To any n E N such that p, 1 split in On a s  pOn = P1P2, 

lOn = L1L2 there correspond r3(n) /#(P1,  n l )  periodic orbits having the same 

periodic structure (i.e., the same lattice £~ C Z2). 

Proof: Notice that  all the points in a periodic orbit define the same quadratic 

form, i.e., if w / is a translate of w then Q~ = Q~,. To see this, note that for 

(s, r) • £~ = £~, the quaternions x = w((O, 0), (s, r)) and x' = J ( (O,  0), (s, r))  

are conjugate, hence have the same real part. Moreover, as we can conjugate 

one to the other by a rational quaternion having norm one and such that  the 

denominators of its coefficients are divisible only by the primes p, 1 both of which 

are relatively prime to the coefficients of the quaternions x, x I, it follows that the 

respective common divisors of the coefficients of the imaginary parts of x and of 
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x' are the same. This implies that Q~ = Q j .  Given n C N so that p, 1 split in (.O n 

we fix some s, r E N so that P[L~ -- id. This means we can solve Qn(x, y) = p"l s. 

Fix a solution (xo, Yo). For any decomposition n = c l + c  2 2  2 + c~ as the sum of three 

relatively prime squares we obtain a quaternion z = xo + yo(cli + c2j + c3k). This 

quaternion determines a labelling of a r × s rectangle (where z is the product 

of the labels from the lower left corner to the upper right corner). Repeat this 

labelling along a bi-infinite sequence of rectangles having the upper right corner 

of one touching the lower left corner of another. This labelling may be completed 

in a unique way to a legal labelling of the whole plane giving an element w E f~ 

which is periodic and whose quadratic form Q~ = Q~. Thus we get r3(n) different 

periodic points of f~ all of which have the same periodic shape. I 
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